Suchen

Donnerstag, 11. Februar 2016

Extremer Frontalaufprall auf die Erde

Kaum Unterschiede zwischen irdischem und Mondgestein
Redaktion: Universität Bayreuth
PRESSEMITTEILUNG
Bayreuth/gc. Neue, in „Science“ veröffentlichte Isotopenanalysen sprechen für die These, dass vor rund 4,5 Milliarden Jahren ein planetenartiger Himmelskörper tief in die Erde eingedrungen und eine Materialmischung erzeugt hat, aus der auch der Mond entstanden ist.


Wie ist der Mond entstanden? Die Fachwelt ist sich weitgehend darin einig, dass vor rund 4,5 Milliarden Jahren ein planetenartiger Himmelskörper auf die Erde geprallt ist, die zu diesem Zeitpunkt bereits einen festen Gesteinsmantel hatte. Dabei wurden riesige Wolken von Staub und Gesteinsbrocken in die Erdumlaufbahn geschleudert, aus denen sich allmählich der Mond herausbildete. Bisher war in der Forschung die Annahme verbreitet, jener Himmelskörper – der nach einer Gestalt aus der griechischen Mythologie den Namen „Theia“ erhielt – sei von der Seite her in einem eher flachen Winkel auf der Erdoberfläche aufgeschlagen.

Diese Hypothese ist jedoch unplausibel, wie ein internationales Forschungsteam mit Prof. Dr. David Rubie vom Bayerischen Geoinstitut (BGI) der Universität Bayreuth jetzt herausgefunden hat. Die im Wissenschaftsmagazin „Science“ veröffentlichten Forschungsergebnisse sprechen vielmehr dafür, dass Theia mit extrem hoher Geschwindigkeit frontal auf die Erde zugestürzt ist, vermutlich mit rund 10 Kilometern pro Sekunde. Die enorme Wucht des Aufpralls setzte Energien frei, die einen großen Teil des Erdgesteins aufgeschmolzen haben. Dadurch ist Theia tief in die Erde eingedrungen und hat sich mit dem Gestein der Erde vermischt – mit dem Effekt, dass es sich bei dem in die Erdumlaufbahn herausgeschleuderten Material ebenfalls um eine solche Mischung handelte.

Sauerstoff-Isotope im Gestein der Erde und des Mondes
Die Wissenschaftler sind zu diesem Ergebnis gekommen, indem sie Gesteinsproben unterschiedlicher Herkunft miteinander verglichen haben: einerseits Gestein aus Hawaii und Arizona, das infolge vulkanischer Prozesse aus dem Erdmantel an die Erdoberfläche gelangt ist, andererseits Mondgestein, das die Astronauten der Apollo-Missionen 12, 15 und 17 mitgebracht hatten. Entscheidend war dabei die Analyse des Sauerstoffs, der rund 90 Prozent des Volumens dieser Gesteinsbrocken ausmacht. Der Sauerstoff im Erdgestein enthält fast nur O-16-Isotope, nämlich Sauerstoffatome, deren Kerne jeweils aus acht Protonen und acht Neutronen bestehen. In nur sehr geringen Mengen kommen auch die schwereren Isotope O-17 und O-18 vor, deren Kerne ein bzw. zwei weitere Neutronen enthalten. Die gleichen Mengenverhältnisse finden sich in allen Proben des Mondgesteins.

„Wir haben hinsichtlich der Sauerstoff-Isotope keine signifikanten Unterschiede zwischen dem irdischen Gestein und dem Mondgestein feststellen können“, erklärt Prof. Rubie, der die an der Gesteinsbildung beteiligten Sauerstoff-Isotope modelliert hat. Auch der BGI-Mitarbeiter Dr. Seth Jacobson, der zurzeit an der Universität Nizza tätig ist, hat an diesen Forschungsarbeiten teilgenommen.

Eine Materialmischung aus Theia und ‚Ur-Erde‘:
Ressource für die Entstehung von Erde und Mond
Die gleichen Anteile von Sauerstoff-Isotopen im Gestein von Erde und Mond sind umso auffälliger, als die Erde, der Mars und andere Planeten des Sonnensystems sich in dieser Hinsicht signifikant unterscheiden. Auch Theia als extraterrestrischer Himmelskörper dürfte sich in diesem Punkt deutlich von der ‚Ur-Erde‘ unterscheiden haben. „Die Ergebnisse unserer Gesteinsanalysen sprechen deshalb eindeutig dafür, dass die Erde in ihrer heutigen Gestalt und der Mond aus einer Materialmischung hervorgegangen sind, die ihren Ursprung in einer wechselseitigen Durchdringung von Theia und ‚Ur-Erde‘ hat“, meint der Bayreuther Geowissenschaftler. „Die nach dem Aufprall in die Erdumlaufbahn geschleuderten Staub- und Gesteinsmengen, aus denen der Mond entstanden ist, enthielten einen ungefähr gleich hohen Anteil von Theia-Material wie die Materialmischung, die sich nach dem Aufprall zum heutigen Planeten Erde verfestigt hat.“

Dieser Befund – so die Autoren der neuen „Science“-Veröffentlichung – spricht eindeutig für einen äußerst heftigen und zerstörerischen Frontalaufprall von Theia. Wäre dieser extraterrestrische Körper seitlich in einem relativ flachen Winkel aufgeschlagen, wäre das Material von Theia größtenteils in der Erdumlaufbahn gelandet. Das heutige Mondgestein würde dann sehr wahrscheinlich andere Anteile von Sauerstoff-Isotopen aufweisen als das Gestein der Erde.

Forschungsförderung durch EU und NASA
Die Bayreuther Forschungsarbeiten von Prof. Rubie wurden aus dem EU-Forschungsprojekt ACCRETE gefördert, für die er 2011 einen ERC Advanced Grant – den höchsten Preis des Europäischen Wissenschaftsrats – erhalten hatte. Dem Autorenteam der in „Science“ veröffentlichten Studie gehören zudem Wissenschaftler der Universität Nizza und der University of California, Los Angeles (UCLA) an. Deren Forschungsarbeiten wurden von der U.S.-amerikanischen Weltraumbehörde NASA unterstützt.

Veröffentlichung:
Edward D. Young et al., Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact, Science 29 Jan 2016: Vol. 351, Issue 6272, pp. 493-496. DOI: 10.1126/science.aad0525

Kontakt:
Prof. Dr. David Rubie
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
95440 Bayreuth
Tel: 0921-55-3711
dave.rubie@uni-bayreuth.de

Aussender:
Universität Bayreuth
Pressestelle
Universitätsstr. 30
95447 Bayreuth

Postfach Bayreuth
95440 Bayreuth

pressestelle@uni-bayreuth.de

Brigitte Kohlberg
Telefon: 0921555357
brigitte.kohlberg@uni-bayreuth.de

Christian Wißler
Tel.: 0921-55-5356
Fax: 0921-55-5325
mediendienst-forschung@uni-bayreuth.de

Ursula Küffner
Sekretariat der Pressestelle
Tel.: 0921-55-5324
Fax: 0921-55-5325
ursula.kueffner@uvw.uni-bayreuth.de
__________________________________________________________________